Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy.

نویسندگان

  • Meng Qiu
  • Dou Wang
  • Weiyuan Liang
  • Liping Liu
  • Yin Zhang
  • Xing Chen
  • David Kipkemoi Sang
  • Chenyang Xing
  • Zhongjun Li
  • Biqin Dong
  • Feng Xing
  • Dianyuan Fan
  • Shiyun Bao
  • Han Zhang
  • Yihai Cao
چکیده

A biodegradable drug delivery system (DDS) is one the most promising therapeutic strategies for cancer therapy. Here, we propose a unique concept of light activation of black phosphorus (BP) at hydrogel nanostructures for cancer therapy. A photosensitizer converts light into heat that softens and melts drug-loaded hydrogel-based nanostructures. Drug release rates can be accurately controlled by light intensity, exposure duration, BP concentration, and hydrogel composition. Owing to sufficiently deep penetration of near-infrared (NIR) light through tissues, our BP-based system shows high therapeutic efficacy for treatment of s.c. cancers. Importantly, our drug delivery system is completely harmless and degradable in vivo. Together, our work proposes a unique concept for precision cancer therapy by external light excitation to release cancer drugs. If these findings are successfully translated into the clinic, millions of patients with cancer will benefit from our work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Truncated Hepatitis B virus like nanoparticles: A novel drug delivery platform for cancer therapy

Nowadays, Nano-sized drug delivery systems have been studied extensively for theirpotential in cancer therapy. Various drug nanocarriers are being developed including liposomes, micelles, and Virus like nanoparticles (VLNPs). VLNPs offer many advantages for developing smart drug delivery systems due to their precise and repeated structures and relatively large cargo capacities. Truncated ...

متن کامل

Effects of Ultrasound Irradiation on the Release Profile of 5-fluorouracil from Magnetic Polylactic co-glycolic Acid Nanocapsules

Background: Drug nano-carriers are one of the most important tools for targeted cancer therapy so that undesired side effects of chemotherapy drugs are minimized. In this area, the use of ultrasound can be helpful in controlling drug release from nanoparticles to achieve higher treatment efficiency.Objective: Here, we studies the effects of ultrasound irradiation on the release profile of 5-flu...

متن کامل

Gold-Curcumin Nanostructure in Photo-thermal Therapy on Breast Cancer Cell Line: 650 and 808 nm Diode Lasers as Light Sources

Background: Au nanoparticles (AuNPs) exhibit very unique physiochemical and optical properties, which now are extensively studied in a range of medical diagnostic and therapeutic applications. AuNPs can be used for cancer clinical treatment with minimal invasion. On the other hand, curcumin is a polyphenol derived from turmeric which is used for medical purposes due to its anti...

متن کامل

State of the art of stimuli-responsive liposomes for cancer therapy

Specific delivery of therapeutic agents to solid tumors and their bioavailability at the target site are the most clinically important and challenging goals in cancer therapy. Liposomes are promising nanocarriers and have been well investigated for cancer therapy. In spite of preferred accumulation in tumors via the enhanced permeability and retention (EPR) effect, inefficient drug release at t...

متن کامل

Multifunctional near-infrared light-triggered biodegradable micelles for chemo- and photo-thermal combination therapy

A combination of chemo- and photo-thermal therapy (PTT) has provided a promising efficient approach for cancer therapy. To achieve the superior synergistic chemotherapeutic effect with PTT, the development of a simple theranostic nanoplatform that can provide both cancer imaging and a spatial-temporal synchronism of both therapeutic approaches are highly desired. Our previous study has demonstr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 115 3  شماره 

صفحات  -

تاریخ انتشار 2018